Math 4300 Homework II Solutions

(1) Suppose A,B,C are non-collinear and C, B, D are non-collinear. Suppose A and D lie on opposite (*) sides of BC and m(ZABC)+m(ZCBD)=[80. (*) We need to show that A-B-D. BEE Let E be such that A-B-E. Then, LABC and LCBE form a linear pair. From the linear pair theorem from Class we get that LABC and LCBE That is, $M(\angle ABC) + m(\angle CBE) = |80.|$ (44) Subtracting (*)-(**) gives $m(\angle CBD) - m(\angle CBE) = 0.$ That is, m(LCBD) = m(LCBE). Let H be the half-plane that is the side of BC that D

Let
$$\theta = m(\angle CBD) = m(\angle CBE)$$
.
By property (iii) of m, we must
have that $\overrightarrow{BD} = \overrightarrow{BE}$.
Thus, either $B-D-E$ or $D=E$ or $B-E-D$.
Recall that $A-B-E$.
Recall that $A-B-E$.
Thus, if $B-D-E$, then $A-B-D-E$.
If $D=E$ then $A-B-D$.
If $B-E-D$, then $A-B-E-D$.
If $B-E-D$, then $A-B-E-D$.
In all cases we get $A-B-D$.

2 Since A, B, C are non-collinear LABC is an angle. Consider the line BC. BC Since A, B, C are non-collinear, we know Let It be the halfplane determined that A & BC. by BC that contains A. Let $\Theta = m(LABC)$ By (ii) of angle measure there exists a unique ray BD With DEH such that $m(\angle DBC) = \frac{\theta}{Z}$. Since D, AEH we know D and A one on the same side of BC. Since $m(\angle DBC) = \frac{\theta}{2} < \theta = m(\angle ABC)$ by a theorem in class